Pareto-Based Multiobjective AI Planning

نویسندگان

  • Mostepha Redouane Khouadjia
  • Marc Schoenauer
  • Vincent Vidal
  • Johann Dréo
  • Pierre Savéant
چکیده

Real-world problems generally involve several antagonistic objectives, like quality and cost for design problems, or makespan and cost for planning problems. The only approaches to multiobjective AI Planning rely on metrics, that can incorporate several objectives in some linear combinations, and metric sensitive planners, that are able to give different plans for different metrics, and hence to eventually approximate the Pareto front of the multiobjective problem, i.e. the set of optimal trade-offs between the antagonistic objectives. Divide-and-Evolve (DAE) is an evolutionary planner that embeds a classical planner and feeds it with a sequence of subproblems of the problem at hand. Like all Evolutionary Algorithms, DAE can be turned into a Pareto-based multiobjective solver, even though using an embedded planner that is not metric sensitive. The Pareto-based multiobjective planner MO-DAE thus avoids the drawbacks of the aggregation method. Furthermore, using YAHSP as the embedded planner, it outperforms in many cases the metric-based approach using LPG metric sensitive planner, as witnessed by experimental results on original multiobjective benchmarks built upon IPC-2011 domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pareto Optimal D* Search Algorithm for Multiobjective Path Planning

Path planning is one of the most vital elements of mobile robotics, providing the agent with a collision-free route through the workspace. The global path plan can be calculated with a variety of informed search algorithms, most notably the A* search method, guaranteed to deliver a complete and optimal solution that minimizes the path cost. D* is widely used for its dynamic replanning capabilit...

متن کامل

A Pareto Front-Based Multiobjective Path Planning Algorithm

Path planning is one of the most vital elements of mobile robotics. With a priori knowledge of the environment, global path planning provides a collision-free route through the workspace. The global path plan can be calculated with a variety of informed search algorithms, most notably the A* search method, guaranteed to deliver a complete and optimal solution that minimizes the path cost. Path ...

متن کامل

Solving Multiobjective Optimization Problem by Constraint Optimization

Multiobjective optimization problems (MOPs) have attracted intensive efforts from AI community and many multiobjective evolutionary algorithms (MOEAs) were proposed to tackle MOPs. In addition, a few researchers exploited MOEAs to solve constraint optimization problems (COPs). In this paper, we investigate how to tackle a MOP by iteratively solving a series of COPs and propose the algorithm nam...

متن کامل

The Real-Time Strategy Game Multi-Objective Build Order Problem

In this paper we examine the build order problem in real-time strategy (RTS) games in which the objective is to optimize execution of a strategy by scheduling actions with respect to a set of subgoals. We model the build order problem as a multi-objective problem (MOP), and solutions are generated utilizing a multiobjective evolutionary algorithm (MOEA). A three dimensional solution space is pr...

متن کامل

Xergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system

Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013